If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2-9=0
a = 6; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·6·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*6}=\frac{0-6\sqrt{6}}{12} =-\frac{6\sqrt{6}}{12} =-\frac{\sqrt{6}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*6}=\frac{0+6\sqrt{6}}{12} =\frac{6\sqrt{6}}{12} =\frac{\sqrt{6}}{2} $
| 20k+60=10k=90 | | y=4,200(1.03)^7 | | 8x-20=6x-10 | | -2x-7=10 | | -16t^2+20t+6=20 | | 3(x+8)=3x-24 | | 6(x-2)=3x+12 | | 360=4x+4x+x | | -22x+35=-25 | | 2.4-3x+1.2x=18.6 | | x+4x3=10 | | R=8u=9 | | 8-7=4+3n | | 4x+45=2x+60 | | 4x+7=4(x-1)+3 | | -10=-14y+14 | | 42=6^x | | 1/8(x−8)=6+x | | -7k+8=-4(1+2k)+8 | | 19+5x/2=34 | | -6x+2(x+2)=12 | | 5x-8+7x=12x | | 18+16/3=x | | (36+65)×2+x=87 | | 4x+150=x | | 9x+89=163 | | 55+2.5x=26+2x | | 3x+10-2x=40+4x | | 4/5p-10=8 | | 2+9(x-5)=5x+11 | | 2x-4(x-5)=-8+2x+16 | | 3a=6.5-10a |